
A Mechanized Approach Towards Automated
Pitch Correction

Dina Brustein David Shustin
dina.brustein@lps-students.org david.shustin@gmail.com

Ethan Wu Anna Xia
ethanwu10@gmail.com annaxia24@gmail.com

Daniel Chong* Forest Song*
junhodan@gmail.com fss26@scarletmail.rutgers.edu

New Jersey’s Governor’s School of Engineering and Technology
July 26th, 2019

*Corresponding Author

Abstract—Music can have many positive impacts on one’s
health, but it is often difficult to learn an instrument. This project
aims to make learning music easier by creating a fast, accurate
mechanized tuning device to decrease time spent tuning. The
device developed in this project was designed specifically for a
guitar. Research has found that this device would appeal to a
variety of musicians, making them more confident that their
instrument is in tune each time they play it and motivating
non-musicians to learn music. To accomplish this objective, a
CAD model consisting of a 3D printed peg holder powered
by a micro servo was designed. This device was replicated in
order to create a total of six tuning modules, which were then
attached to the guitar in order to turn the pegs. A Fast Fourier
Transform was used in conjunction with windowing functions
and an algorithm for fundamental frequency detection in order
to extract the frequencies from a user strumming six guitar
strings one at a time. Each frequency was then determined to
be sharp or flat, and the tuning unit was instructed to adjust
the tension of each string accordingly. An additional feature was
implemented by way of a web server wherein a user could input
custom frequencies to tune the strings to, rather than adopting
the standard tuning frequencies. This device was determined to
tune faster than 33.0% of guitarists and can later be expanded
to instruments other than the guitar.

I. INTRODUCTION

Music education allows musicians, regardless of age, to
enjoy many health and mental benefits. The brains of music
students show stronger neural connections, more gray matter,
higher IQ, better information processing, memory, attention,
and motor coordination [1]. Additionally, music therapy, which
includes learning to play an instrument, can physically and
emotionally help patients with numerous diseases, including
dementia, asthma, autism, and Parkinson’s disease [2].

One of the factors deterring beginners from continuing to
study music is the difficulty of tuning an instrument. A study
of 139 participants conducted by the National Association for
Music Education found that the average musician needs 4.5
years of experience in order to develop tuning independence

[3]. Even for more experienced musicians, tuning takes time
that can otherwise be spent practicing their instrument. Fur-
thermore, during group lessons, the teacher must individually
tune each student’s instrument, which can take up a significant
portion of the class time. A self-tuning instrument would
therefore allow musicians to spend more time playing and
grant them confidence that their instrument is in tune.

The objective of this project was to create an automated
tuner that could tune faster than 50% of guitarists and be
accurate within five cents of the desired note.

II. BACKGROUND

A. Market Data

Musicians of string and non-string instruments as well as
non-musicians participated in a survey that collected informa-
tion related to tuning and the idea of a mechanized automated
tuner. There were 272 responses in total after the survey was
distributed across social media and guitar forums. Through the
survey, it was discovered that 61.5% of 109 string instrument
players and 87.7% of 106 players of non-string instruments
strongly agreed or agreed that having a self-tuning instrument
would make them more confident that their instrument is in
tune. Furthermore, 61.5% of the string instrument players
and 85.9% of the non-string instrument players agreed or
strongly agreed that they would like a self-tuning instrument.
Among 52 non-musicians who were not actively planning
on learning an instrument, 65.3% agreed or strongly agreed
that the availability of a self-tuning instrument would make
them more likely to learn an instrument. Overall, this data
demonstrated significant market demand for an automatic
instrument tuner. The full data collected during the survey is
found in Appendix A.

1

mailto:dina.brustein@lps-students.org
mailto:david.shustin@gmail.com
mailto:ethanwu10@gmail.com
mailto:annaxia24@gmail.com
mailto:junhodan@gmail.com
mailto:fss26@scarletmail.rutgers.edu

B. Music Theory

The spectrum of frequencies audible to the human ear is
grouped into the notes C, C], D, D], E, F, F], G, G], A, A],
and B. These notes can occur in multiple octaves, which are
numbered from 0 to 9. Therefore, the notes are subscripted
with the octave in which they occur, e.g. D2 or G]4. The
frequency of a note in one octave is equal to half the frequency
of the note in the next higher octave.

The difference in frequency between two adjacent notes is
referred to as one semitone. Semitones can also be converted
into cents, with 100 cents being equal to one semitone. Cents
are often used to determine how sharp or flat a note is or the
extent to which a pitch is out of tune. Cents can be derived
from Equation 1. In the equation, n represents the number of
cents by which a note is out of tune, f1 represents the desired
frequency, and f2 represents the current frequency of the note.

n = 1200 · log2

(
f2
f1

)
(1)

When a note is played on any instrument, the instrument
emits a range of several frequencies, one of which is the
note’s fundamental frequency, the lowest peak emitted in the
signal. The other frequencies emitted are harmonics (overtones
of the fundamental frequency), which are integer multiples
of the fundamental frequency. Depending on the instrument,
inharmonic overtones (frequencies higher than the fundamen-
tal which are not integer multiples of the fundamental) may
also be emitted. String instruments generally have overtones
which are very close to harmonic [4]. An automated tuning
device will therefore need the ability to distinguish between
the fundamental frequency, overtones, and harmonics within a
string’s auditory spectrum.

The particular relative amplitudes of each of the harmonics
constitutes the acoustic “signature,” or timbre, of a given
instrument. Timbre depends on the emitted sound’s harmonic
spectrum and each harmonic’s timing of appearance [5]. In
some instruments, the fundamental frequency may actually
be lower in amplitude or absent all together. However, the
human brain is still able to perceive it as the same pitch
in the correct octave [6]. Therefore, the strongest frequency
in the spectrum produced by a string is not necessarily the
fundamental frequency.

C. Frequency

String instruments like the guitar, violin, viola, cello, and
harp create sounds through the vibrations of their strings. The
pitch of a note played on a string instrument corresponds to
the frequency of the standing wave created by the string’s
vibrations. Equation 2 displays this relationship with f as the
frequency, T as the tension of the string, L as the length of
the string, and m as the string’s mass.

f1 =

√
T

m/L

2L
(2)

When tuning a string instrument, there are pegs on the
instrument which, when rotated, increase and decrease the
tension, T , in the string, therefore increasing or decreasing
the frequency of the note played when that string vibrates. For
this project, the automated tuner was tested on a six stringed
guitar with the standard notes of E2, A2, D3, G3, B3, and E4,
with frequencies of 82.41 Hz, 110.00 Hz, 146.83 Hz, 196.00
Hz, 246.94 Hz, and 329.63 Hz, respectively.

D. Alternate Guitar Tunings

Certain chords on guitar are difficult to play because the
notes they consist of are physically far apart on the guitar,
so it is difficult to reach every point on the guitar that must
be compressed in order to play the chord. To combat this,
guitarists sometimes use alternate tunings, where they tune
each string to a frequency other than its standard fundamental
frequency. One popular example is Drop-D, where the low
E string is tuned to a D note instead of the standard E.
This tuning allows guitarists to play power chords [7]. Due
to the prevalence of these tunings, several surveyed guitarists
commented in the survey that they would not be interested in
an automatic tuner unless it could tune to custom tunings.

E. Proportional-Integral-Derivative (PID) Controller

Controllers that manage output typically use feedback loops
to make their measured variable, or process variable, reach a
specific target value, or setpoint. The most common feedback
algorithm, used in over 90% of all control loops, is the
proportional–integral–derivative controller (PID) [8].

PID works by multiplying the current error, e(t) (which
is computed in Equation 3) using the setpoint r(t) and the
process variable y(t)), the cumulative error, and the rate
of change of the error by constants chosen for the specific
application, Kp, Ki, Kd, respectively. The sum of these three
terms at time t computes the output of the controller, u(t).

e(t) = r(t)− y(t) (3)

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
(4)

Equation 4 describes a continuous PID controller. However,
when working with a computerized loop with time interval
∆t, the PID controller actually runs in discrete time, for which
continuous time is only an approximation as ∆t approaches 0.
The discrete PID controller is better modeled by the sequence
described in Equation 7, where n is current number of the
loop, en is the error in the nth loop, and tn is the time at the
start of the nth loop.

∆tn = tn − tn−1 (5)

en = e(tn) (6)

un = Kpen +Ki

n∑
k=0

ek∆tk +Kd
en − en−1

∆tn
(7)

2

However, in both the continuous and discrete versions
of PID, the ”I” term, represented in Equation 7 as
Ki

∑n
k=0 ek∆tk can ”wind up” and reach very large values

as an error persists over time. For this reason, the I term
is clamped between an upper and lower bound. Setting a
maximum and minimum value for the I term prevents the
system from winding up over time.

Another problem presented by the I term is the possibility of
overshoot. Once the process variable reaches the setpoint, there
may still be a considerable value of the I term resulting from
a history of error, causing the system to overshoot. Therefore,
a constant is set called a tolerance. If the process variable is
less than the tolerance away from the setpoint, the I term is
set to zero to prevent overshoot.

By choosing the correct tuning constants (Kp, Ki, and Kd)
and good tolerance and clamping constants in Equation 7,
unreliable, lagged, and turbulence-prone outputs can reach and
hold a measured variable to a setpoint.

F. Digital Signal Processing

1) Fourier Transform: A note played by an instrument
is not a perfect sine wave. The harmonies that real-world
instruments produce can be represented as a sequence of
sinusoidal functions with varying frequencies. The sum of the
harmonies present in the sound of an instrument’s note is the
note itself. Therefore, a note can be represented by a Fourier
series of its harmonics [9].

In order to perform useful analysis of sound waves, it is
necessary to have a way of decomposing a signal into its
harmonies. This task is accomplished with a Fourier transform,
a mathematical operation that maps a function of time or
signal into a function of frequency [10]. Equation 8 shows this
definition, where f̂(ω) is the Fourier transform of the signal
f(t) [11].

f̂(ω) =

∫ ∞
−∞

e−2πiωtf(t) dx (8)

The Fourier transform defined in Equation 8, however,
describes an operation on continuous functions. Discrete func-
tions, such as those describing the sequence of samples that
make up a digital audio file, cannot be manipulated with
the Fourier transform. Instead, they are processed with a
version of the Fourier transform that can be called on discrete
functions, aptly named a Discrete Fourier Transform (DFT).
An optimized version of the DFT, a Fast Fourier Transform
(FFT), can perform the same function faster. [10].

However, there are limitations to the frequencies that can
be detected by a Fourier transform. The Nyquist theorem
states that the sampling frequency must be at least twice the
frequency of the highest frequency in the signal. Any higher
frequencies appear as a lower frequency signal where fc ≤ fs

2 ,
fc is the frequency of the aliased peak, and fs is the sampling
frequency [12].

2) Windowing Functions: A Fourier transform essentially
assumes that the ends of the signal are “connected” to each
other. If there are discontinuities created when transitioning

between the beginning and end of the signal, they manifest
themselves in the frequency spectrum as a frequency well
above the Nyquist limit, aliasing into the range of the signal
between 0 and half of the sample rate. Therefore, frequencies
will appear in the Fourier transform to be “spread out” over
multiple frequencies, a phenomenon known as spectral leakage
[10].

To alleviate the spectral leakage, windowing can be used
to eliminate the discontinuity by decreasing the amplitude of
the signal at its two ends smoothly down to zero or close to
zero. Specific windowing functions, however, may also change
the frequency content of the signal by introducing additional
frequencies. The frequency response section of each window-
ing function contains side lobes that show these additional
frequencies and their amplitudes which are introduced for each
frequency in the original signal. In addition, the windowing
functions also affect the amplitudes of each frequency in the
original signal. Based on these characteristics of the individual
windowing functions, a specific windowing function suited to
the task at hand must be selected [10].

3) Fundamental Frequency Detection: Many algorithms
have been developed for estimating the fundamental frequency
of a tone from a digital signal. There are algorithms that
operate both in the time domain and the frequency domain.

One time domain algorithm is autocorrelation, where the
signal is compared with a delayed version of itself, searching
for the delay values where there is the largest amount of
correlation between the two signals. Since the frequencies
produced by a harmonic tone source are all periodic with
a frequency equal to the fundamental frequency, the lowest
delay showing a high correlation is likely the fundamental
frequency [13]. The method for calculating the correlation can
differ, and is typically an average of the differences between
the signal and its delayed counterpart. A disadvantage of
autocorrelation methods is that they tend to perform poorly on
sounds composed of multiple tones (multiple different notes
being played simultaneously, each with their own fundamental
frequency and harmonics).

Another algorithm for fundamental frequency detection, har-
monic product spectrum (HPS), operates in the frequency do-
main. HPS repeatedly compresses the present frequencies by a
factor of sequential integers. The algorithm then multiplies the
compressed frequency domain with less compressed versions
of the same frequency domain, performing a multiplicative
overlay. The nth harmonic, fn is computed as the fundamental
frequency, f0 multiplied by an integer, fn = n · f0, n ∈ Z.
Therefore, throughout each division of the frequency domain
by an integer, a harmonic will align itself with the original
fundamental frequency, causing a peak of constructive interfer-
ence at the fundamental frequency and destructive interference
at other frequencies [13]. As a result, peaks remaining in the
spectrum after many multiplicative iterations correspond to the
fundamental frequencies present in the signal.

3

Fig. 1. The LEGO® EV3 Medium Servo Motor prototype

G. Software

Autodesk Fusion 360 computer aided design (CAD) soft-
ware was used to create a three-dimensional model of the
tuning units and to design the 3D printed parts of the tuning
units. Autodesk Fusion 360 was also used to create two-
dimensional drawings of the tuning units.

III. EXPERIMENTAL PROCEDURE

A. Physical Components

The automated tuning device (henceforth referred to as the
device) is composed of six tuning units connected together
to the head of the guitar, a Raspberry Pi with a microphone
placed near the guitar, and a USB battery bank to power the
Raspberry Pi.

B. Prototyping

In the first steps of the design process, several proofs of
concept were built to simulate the proposed design. Experi-
ments were done with 1:1, 3:1, and 9:1 gear ratio on a motor
with similar stall torque to the FEETECH FS90MR Servo, the
LEGO® EV3 Medium Servo Motor [14], [15]. A gearbox was
prototyped on the motor, and gears were added and removed
to reach the desired gear ratio.

Whereas the 1:1 gear ratio was too weak to turn the most
resistant peg, the low E string’s, the 3:1 and 9:1 gear ratios
were able to turn the peg. The 3:1 gear ratio, shown in
Figure 1, was adopted because of it was more compact and
required less complexity than the 9:1 gearbox while achieving
the same goal.

After the design was completed, the first prototype of the
tuning unit was printed and constructed. The initial design did
not include a connection mechanism or attachment point; it
consisted of only the enclosure, the hot dog, and the relevant
parts for turning the peg.

Assembly was impaired by some mistakes in the CAD. The
servo attachment holes were made too large due to human
error, so instead of using the proper screws to attach the servo,

Fig. 2. The first prototype

Fig. 3. The servo horn adapter

the servo was attached by pressing it against hot glue on the
attachment point.

Once the servo mount was fixed in the CAD model, the
remainder of the assembly process continued without trouble.
The completed prototype can be seen in Figure 2.

C. Physical Assembly

In order to design a device capable of turning the pegs of
a guitar, research was done into an assortment of motors and
servos to find one that fits between the pegs of a standard guitar
while providing an ample amount of torque. The FEETECH
FS90MR metal geared continuous rotation servo was chosen to
drive the mechanism. The transmission’s gears, bushings, and
axles were sourced from the LEGO® Technic set while the
other parts of the assembly were created with Autodesk Fusion
360 CAD software and manufactured using an Ultimaker 3 3D
printer with PLA filament.

A custom 3D printed piece, shown in Figure 3, was designed
to allow for the connection of the axle and the servo horn.
This piece featured a 23 mm diameter disk and a 10 mm high
hollow cylinder that fits a LEGO® axle on the inside.

4

Fig. 4. A fully assembled tuning unit

Fig. 5. The enclosure, its isometric views, and a cross-section

The design was split into repeatable modules called “tuning
units,” shown in Figure 4, to accommodate guitars of various
geometries.

The transmission was designed as a gearbox made of an 8-
tooth gear driving a 24-tooth gear. This transmission achieves
a 3 to 1 gear ratio, multiplying the servo’s output torque and
dividing its speed by a factor of 3. By gearing the servo’s speed
down, the gearbox has finer control while providing sufficient
strength to turn the guitar’s tuning peg. The transmission was
housed in a 3D printed enclosure with a hole cut out for the
servo, along with two more for its mounting screws.

A wall was extruded to provide a second point of contact
for the top axle. Two holes were cut from the front to
allow the axles to fit through. The top and bottom remained
open, allowing the inner assembly to be more accessible and
providing enough space for the gearbox. Another element was
added to the top of the enclosure with two holes. The holes can
be used to pin the modules together, modularizing the system.

Each tuning unit controls one peg on the guitar. Six units
were 3D printed along with a connection mechanism to link all

Fig. 6. The rail

Fig. 7. A complete assembly of 3 tuning units connected by a rail

six tuning units and mount them on the guitar. The connection
mechanism is a rectangular rail, pictured in Figure 6, and it
was designed to connect the units into groups of three, with
one group on each side of the guitar’s head. Another rail of a
longer length was designed to accommodate 6 pieces on the
same side to allow the tuning of guitars with all pegs on one
side.

The connection method can be used in two different ways.
Both methods connect each enclosure to the rail using screws.
The enclosure design fits hex nuts around its mounting points,
allowing the screw to first fit through the rail, into the
enclosure, and be enclosed in a nut. The second method, a
more user-friendly option (pictured in Figure 7), is to thread
the screw through the enclosure first, then through the rail,
capping it with a wing nut on the rail’s side.

Another 3D printed piece was then designed to grip onto
the peg itself. The resulting piece was named the “hot dog”
because of its shape. The hot dog, pictured in Figure 8,
supports its guitar peg on four sides, rotating it to change
the string’s pitch. The other end features a hole that can fit a

5

Fig. 8. The hot dog

Fig. 9. The completed assembly

LEGO® axle and a corresponding bushing to connect it to the
enclosure.

D. Final Mechanism

Once the first prototype was proved to have tuning ca-
pabilities, the attachment mechanism depicted in Figure 6
and Figure 7 was created. The new version was printed and
assembled with 3 tuning units connected by a rail.

Due to human error in the CAD, the holes were made
slightly too small to fit the screws. The holes were widened
with a screwdriver and the CAD was corrected for future
prints. Once the tuning units were held together, as in Figure 9,
the assembly was attached to the guitar’s head with velcro as
shown in Figure 10.

E. Control Software

The software that controls the device consists of three major
components: the web user interface, which has JavaScript
running in the user’s mobile device and a web server running
on the Raspberry Pi, the pitch detector program, and the motor
control program. The API backend to the web user interface
directly calls functions on the pitch detector program, which
runs in the same process. The pitch detector program then
communicates to the motor control program via a Unix named
pipe.

Fig. 10. The completed assembly attached to the guitar head

The continuous rotation servo motors were controlled by
from the Raspberry Pi via a C++ program utilizing the C
library PiGPIO, used for sending the servo control pulses. The
motor control program reads how out of tune each string is in
cents from the pitch detector program, and uses it to feed a PID
controller, as shown in Equation 7, for each string. Because the
process variable, y(t), is the difference in cents between the
target frequency and the current frequency, the PID controller
aims to minimize the absolute value of the process variable.
Therefore, the setpoint, r(t) is equal to zero. The error can
then be calculated using Equation 9.

en = −y(t) (9)

The error passes through the PID controller, and the output
is used to set the speed of the servos. If a string is detected
as not being played, the program commands that servo to stop
and hold position.

The pitch detector program runs the pitch detection algo-
rithm, the API backend to the web user interface, and the
code responsible for acquiring audio from the microphone
connected to the Raspberry Pi each in different threads. For
reading audio, pyalsaaudio was used to get audio data through
the Advanced Linux Sound Architecture (ALSA) interface. 16
periods of 1024 samples are read before passing the entire
16384-sample buffer over to the pitch detection algorithm,
running in a separate thread.

The web user interface server consists of the web server
nginx, which serves pre-built files generated by Gatsby for
the app and forwards API requests to the Flask-based backend
server which communicates with the pitch detector program.

F. Pitch Detection Algorithm

The audio buffer received from the microphone on the
Raspberry Pi is first multiplied with a Hanning window using
the SciPy library. Next, a real Fourier transform is applied
using NumPy. A crude signal-to-noise metric is then calculated

6

to determine if the guitar is currently playing. This metric
is calculated by taking the difference between the minimum
and maximum intensities of the frequency spectrum within a
frequency window of between 100 and 500 Hz. If the signal-
to-noise ratio in this frequency band is below 42 dB, then it is
assumed that the guitar is not being strummed, and the device’s
motors are commanded to switch off.

The frequency spectrum is then subtracted with a “noise
profile” generated beforehand to eliminate background self-
noise from the microphone and sound system. This profile is
generated by sampling 5 buffers from the microphone after
waiting through 5 buffers for the microphone to start up. The
profile is then saved to disk to be read in for this noise-
cancellation step.

Three iterations of the HPS algorithm are then applied: the
frequency spectrum is multiplied with versions of itself which
are compressed on the frequency axis by factors of 2, 3, and 4.
The amplitudes of the processed frequency spectrum are then
converted to dBFS.

Frequency bins are then constructed based on the target
frequencies that each string is supposed to be tuned to and
the first harmonic overtone. Any harmonics that are within 5
cents of a fundamental frequency or overtone of another string
are ignored. The points in the frequency spectrum obtained
from the Fourier transform are then sorted by the amplitude
of the frequency. They are then iterated through in order
of descending amplitude, and each of these “peaks” is then
assigned to the closest frequency bin. If the frequency of the
peak is more than 200 cents away from the frequency of the
bin, that peak is not considered. If there already has been
a peak assigned to that bin, then the new peak is also not
considered because it is of lower amplitude than the peak that
was already assigned. Once all frequency bins have been filled,
the iteration stops. If the amplitude of the peak is more than
24 dB below the loudest peak, it is also discarded and the
iteration also stops. The bins corresponding to any overtones
of strings are then discarded, and the remaining frequency bins
contain the fundamental frequencies corresponding to each
guitar string that was plucked.

The results of this process on a strum of all six strings
of a guitar are shown in Figure 11. Each dashed vertical
red-orange line shows the identified pitch of the identified
strings, and the dotted green and black lines show the locations
of the frequency bins, where the green lines show the bins
corresponding to the correct fundamental frequencies of the
guitar strings and the black lines show the overtones of those
strings.

Each of the peak locations for detected frequencies are then
refined using a parabolic interpolation, implemented with an
interpolation function found in a sample implementation of
pitch detection algorithms found on GitHub [16].

Once the fundamental frequencies of each string are de-
tected, they are then compared against the reference tuning
and their pitch offset in cents is then calculated. This pitch
offset is then sent to the PID controller as the process variable,
as described previously.

Fig. 11. FFT of guitar strum with overlaid output of frequency bin based
pitch detection

Fig. 12. User interface for tuner customization

G. Web Application Development

A web application, shown in Figure 12, was developed to
configure the tunings of the device. The front end was first
designed in HTML using React and Gatsby, with text boxes
for the user to enter notes or frequencies, as well as the desired
accuracy of the mechanism, measured in cents. The notes
were then converted to frequencies using JavaScript code.
The resulting frequencies were transmitted, along with the
requested accuracy, to the mechanism, and this communication
was developed using the Axios HTTP request library.

7

H. User Instructions

In order to set up the device, users must first align the tuning
modules in order to reflect the spacing between pegs on their
guitar. They must do this only when tuning a guitar for the
first time because the connection system allows the user to
lock the modules into the correct position.

To tune their instrument, users must input their desired fre-
quencies into the web application. They must then attach each
tuning module to a tuning peg. Next, they must individually
select what string they are tuning on the web application and
pluck that string continuously until the module for that string
stops moving.

I. Device Testing

The speed and accuracy of the device was tested by detuning
the guitar and recording the frequency that each detuned string
emitted. Then, the tuning program was executed as the user
plucked each string individually. On the web application, the
user was able to disable servos that the user was not currently
using to tune. When all the strings were in tune according to
the G Strings mobile tuning application, the frequencies of the
tuned strings were recorded. The time to tune all the strings
was also recorded.

Because one servo was defective, only five strings were
tuned. The time to tune all six strings was extrapolated by
multiplying the time taken to tune five strings by 6/5.

IV. RESULTS

A. Device Testing

After ten trials, it was determined that the tuner took
an average of 95.5 seconds to tune five strings, which was
extrapolated to a time of 114.6 seconds to tune all six. This
was faster than 33.0% of string instrument players, although
the majority of the musicians in the survey were intermediate
and advanced, while this device’s target audience is comprised
of beginners. Furthermore, in a group class, the tuner may
become more viable because students can tune their guitars
simultaneously instead of the teacher having to tune each
guitar in succession.

The absolute error for each trial is seen in Figure 13.
The trials showed that lower strings were generally tuned

more quickly and accurately than higher strings, so it is likely
that had the servo been functional, the extrapolated time would
have been an overestimate because the simple extrapolation
method assumes that all strings take the same amount of time
to tune.

B. Failure Analysis

Initially, the tuner was intended to tune all six strings at
once. The quality of the thresholding function used, however,
made the tuner’s ability to detect all six peaks inconsistent. The
threshold function had a high failure rate, either preventing
the peaks corresponding to frequencies of other strings to be
detected or classifying too many noise peaks as real data. In
addition, harmonics sometimes had higher amplitudes than

Fig. 13. Graph displaying absolute error of automated tuning (excluding the
A string)

TABLE I
PID PARAMETERS

Parameter Value
Kp 0.75
Ki 0.0004
Kd 20

their fundamental frequencies, causing them to be detected
rather than the correct peak.

The quality of the servos was another source of difficulty.
When the servos were powered, it was discovered that because
of the Raspberry Pi’s limited GPIO timing control, the servo
could only be driven at 5 speeds in either direction. This
limitation was far from the optimal continuous speed range,
and presented an obstacle to development of the tuning control.
With the correct PID tuning (shown in Table I), however, a
tuning accuracy of ±3 cents was achieved. Furthermore, one
servo was defective.

C. Digital Signal Processing

1) Transformation to Frequency Domain: For the Fourier
transform, a Blackmann-Harris windowing function was ini-
tially chosen based on sample code for various pitch-detection
algorithms [16]. It was soon apparent, however, that the win-
dowing function was introducing significant spectral leakage
at inharmonic frequencies that were close to the harmonics
and fundamentals of certain other strings. Instead, the Hann
windowing function was chosen for its small side lobes, which
resulted in minimal additional inharmonic spectral content
being added [10].

2) Microphone Noise: The microphone chosen to be used
on the Raspberry Pi exhibited significant amounts of self-noise
(noise intrinsic to the microphone and its associated analog-
to-digital conversion circuitry), including a specific peak very
near to the frequency of a D3. This peak was shown to interfere
with the detection of the fundamental frequency of the guitar’s
D string as it is also tuned to a D3. Therefore, the noise
cancellation step was developed.

3) Other Considered Pitch-Detection Algorithms: Origi-
nally, the HPS algorithm was not employed for simplicity and

8

Fig. 14. Autocorrelation output on strum of guitar, with actual frequencies
of strings overlaid

the frequency bin categorization algorithm was programmed
to search for additional overtones. However, this proved to
be rather unreliable in differentiating between fundamental
frequencies and harmonic overtones. The HPS was instead
implemented to attenuate the amplitudes of these overtones.
It also helped greatly reduce the amplitudes of background
noise and decreased the width of the peaks corresponding to
frequencies emitted by the guitar strings.

An autocorrelation fundamental frequency detection algo-
rithm was not used because autocorrelation based techniques
struggled with separating the pitches of the multiple guitar
strings playing simultaneously. This is likely because the
periodicity of an individual tone becomes much less pro-
nounced when played in combination with another tone. Since
autocorrelation depends on observing the period of periodic
parts of the signal, this made it difficult for the autocorrelation
to find all of the fundamental frequencies of the various
strings with any accuracy. Figure 14 shows the output of
the autocorrelation on an audio clip of all six strings of a
guitar being strummed. Each of the dotted black lines is the
actual frequency of one of the strings; it is clear that although
3 strings (the two lowest frequency strings and the highest
frequency string) are detected with a fair degree of accuracy,
the remaining three strings show no distinguishable peaks and
thus no clear correlation at their respective frequencies.

V. CONCLUSION

Overall, the device had an average tuning time of 114.6
seconds to tune all six strings, which was faster than 33% of
string instrument players from the survey. While the goal was
for the device to tune faster than 50% of string instrument
players from the survey, a majority of the respondents to the
survey were intermediate or advanced and the device is geared
towards beginners. As the learning curve progresses, the device
accuracy will improve as well.

Future works include developing a sturdy structure to mount
the tuning units, Raspberry Pi, and wiring to the guitar to
make the system more compact. In order for this product to
be marketable to users, it would need a better thresholding
function to make it more consistent, as well as the aforemen-
tioned changes to make it more professional. It would also
need to be able to stop servos automatically, as it places a
large burden on users to force them to decide when the tuner
is done and when it is still going.

One way to drastically reduce tuning time would be to tune
all six strings simultaneously, rather than one at a time. This
would be feasible with an improved thresholding function.

This device can also be expanded to service a variety of
stringed instruments in addition to guitars. The device can
especially be adapted to all instruments in the guitar family
without radically changing its structure.

Outside of the string family, the survey in Appendix A
demonstrates that wind, percussion, and other non-string mu-
sicians are even more interested in an automatic tuner than
those who play string instruments. Piano in particular is an
instrument that is very difficult to tune. Many pianists have
to hire tuners in order to tune their instruments, which, on
average, takes 1.5 hours and costs about $115 [17], [18]. In
the survey, an overwhelming majority—88.5%—of pianists
agreed or strongly agreed that they would like a self-tuning
instrument. Among musicians who played instruments other
than piano or string instruments, 82.2% agreed or strongly
agreed. Both these figures are far higher than the 61.5% of
string musicians who agreed or strongly agreed.

APPENDIX A
SURVEY DATA

The following questions were asked in the survey.
Question 1 (asked of all respondents): What instrument do

you play? (Figure 15)
Question 2 (asked of all musicians): How would you de-

scribe your skill level with your instrument? (Figure 16 and
Figure 17)

Question 3 (asked of all string musicians): How long has it
been since you last tuned your instrument?

Question 4 (asked of all string musicians): Please tune your
instrument (you can use any kind of tuning technology you
want) and time how long it takes you to do so. Submit your
time as the answer to this question. (Figure 18)

Question 5 (asked of all non-musicians): Are you actively
planning to learn an instrument?

Question 6 (asked of all respondents): Which region best
describes your geographic location? (Figure 24)

Question 7 (asked of all respondents): What age group are
you in? (Figure 25)

Respondents were also asked to rate their level of agreement
with the following statements.

Statement 1 (for musicians): I would like a self-tuning
instrument. (Figure 19 and Figure 20)

9

Statement 2 (for musicians): If I had a self-tuning instru-
ment, I would be more confident that my instrument would be
in tune each time I played it. (Figure 21 and Figure 22)

Statement 3 (for non-musicians who are not actively plan-
ning to learn an instrument): The availability of a self-tuning
instrument would make me more likely to learn an instrument.
(Figure 23)

Fig. 15. Responses to Question 1

Fig. 16. String instrument players’ responses to Question 2

Fig. 17. Other musicians’ responses to Question 2

Fig. 18. String instrument players’ responses to Question 4

Fig. 19. String instrument players’ responses to Statement 1

Fig. 20. Other musicians’ responses to Statement 1

10

Fig. 21. String instrument players’ responses to Statement 2

Fig. 22. Other musicians’ responses to Statement 2

Fig. 23. Responses to Statement 3 by non-musicians who are not planning
on learning an instrument

Fig. 24. Responses to Question 6

Fig. 25. Responses to Question 7

11

ACKNOWLEDGMENTS

The authors of this paper gratefully acknowledge the fol-
lowing: project mentor Forest Song and project liaison Daniel
Chong for their valuable engineering expertise and mentor-
ship; Andrew Page for providing vital building materials;
Residential Teaching Assistant Benjamin Lee for volunteering
his guitar to test on; Professor Roy Yates for his invaluable
feedback on data collection; Evan Dogariu for his experience
and advice on signal processing; Dean Jean Patrick Antoine,
the Director of GSET, for his management and guidance; Head
Residential Teaching Assistant Michael Higgins and Research
Coordinator Helen Sagges for their guidance on conducting
proper research; Rutgers University, Rutgers School of En-
gineering, and the State of New Jersey for the chance to
advance knowledge, explore engineering, and open up new
opportunities; the Rutgers Makerspace for access to their
3D printer; Lockheed Martin, the New Jersey Space Grant
Consortium, and other sponsors for their funding of our sci-
entific endeavors; and lastly, GSET alumni for their continued
participation and support.

REFERENCES

[1] The Royal Conservatory for Music, “The benefits of music education,”
March 2014.

[2] American Music Therapy Association, “Definition and quotes about
music therapy,” 1998-2019.

[3] M. T. Hopkins, “Teachers’ practices and beliefs regarding teaching
tuning in elementary and middle school group string classes,” Journal
of Research in Music Education, vol. 61, no. 1, pp. 97–114, 2013.

[4] J. Wolfe. How harmonic are harmonics? The University of New South
Wales.

[5] P. J. Donnelly and J. W. Sheppard, “Classification of musical timbre
using Bayesian networks,” Computer Music Journal, vol. 37, no. 4, pp.
70–86, 2013.

[6] B. H. Suits. The missing fundamental. Michigan Tech Physics.
[7] L. Zucker. (2015, April) Lesson: The advantages of alternate tunings.
[8] K. Åström and T. Hägglund, “The future of PID control,” Control

Engineering Practice, vol. 9, no. 11, pp. 1163 – 1175, 2001.
[9] E. W. Weisstein. Fourier series. Wolfram MathWorld.

[10] National Instruments, “Understanding FFTs and windowing.”
[11] G. Kaiser, A Friendly Guide to Wavelets, ser. Modern Birkhäuser

Classics. Birkhäuser Boston, 2010.
[12] B. A. Olshausen. Aliasing.
[13] P. de la Cuadra, “Pitch detection methods review.”
[14] LEGO® Education. EV3 medium servo motor.
[15] FEETECH. FEETECH FS90MR (2 pack) - 360° rotation — metal gear

continuous rotation robotic servo — by himalayanelixir.
[16] endolith. Frequency estimation methods in Python.
[17] Modern Piano Boston, “How long does it take to tune a piano?” April

2016.
[18] Piano Technician Academy, “How much money do piano tuners make?”

November 2017.

12

	Introduction
	Background
	Market Data
	Music Theory
	Frequency
	Alternate Guitar Tunings
	Proportional-Integral-Derivative (PID) Controller
	Digital Signal Processing
	Fourier Transform
	Windowing Functions
	Fundamental Frequency Detection

	Software

	Experimental Procedure
	Physical Components
	Prototyping
	Physical Assembly
	Final Mechanism
	Control Software
	Pitch Detection Algorithm
	Web Application Development
	User Instructions
	Device Testing

	Results
	Device Testing
	Failure Analysis
	Digital Signal Processing
	Transformation to Frequency Domain
	Microphone Noise
	Other Considered Pitch-Detection Algorithms

	Conclusion
	Appendix A: Survey Data
	References

