
1

Smart Robot Navigation with Computer
Vision and EEG Control

Justin May, Salman Omer, Forest Song,
Gaurav Sethi, Daniel Chong, and Samuel Minkin

Abstract—This paper describes the design process towards
designing a smart robot that can be controlled using an electroen-
cephalograph (EEG). The robot will be able to autonomously
navigate around obstacles using computer vision and an ultra-
sonic sensor. Using an EEG, we will measure brain activity by
interpreting basic alpha and beta waves. While professional grade
EEGs can detect many different brain waves, we can make a
cheaper EEG that is capable of reading alpha and beta waves.
Alpha waves occur at around 8-12 Hz and when measured from
the frontal lobe provide an estimate of how relaxed a person is,
while beta waves occur around 12-30 Hz and correspond to how
much a person is concentrating or how alert they are. This data
will be interpreted by a machine learning model that will be
able to identify distinct thoughts. By optimizing the EEG design
and software, specific thoughts can be more accurately mapped.
The brain imaging software will be integrated with the robot.
By reading certain level of brain waves, certain commands can
be given to the robot. For navigation purposes, the robot needs
more maneuverability to strafe around obstacles than a simple
tank drive. Different maneuverable drivetrains, called holonomic
drivetrains, were examined. Ultimately, a mecanum drivetrain
was decided on; the process of designing this drive is detailed in
this paper. In addition, the robot requires sensory that will make
it suitable for navigation. This paper examines the use of both
OpenCV for computer vision and an ultrasonic sensor to help
the robot with navigation. .

I. INTRODUCTION

WHEN coming up with a project idea, we wanted to
create something that would allow us to challenge

ourselves while maximizing our skill sets. Our group
consists of one mechanical engineering student and
five electrical/computer engineering students. On the
electrical/computer side, this group has a strong foundation
in software and circuit principles. Furthermore, many group
members have basic experience with signal processing
principles from coursework or outside projects. On the
mechanical side, our mechanical student (Forest Song) has
extensive experience with robotics concepts. As a whole, our
group has the foundation to tackle many technical problems,
so it became important to find a problem that would allow
everyone to contribute meaningfully. Each group member
approaches this project with an open mind and willingness
to learn, allowing us to take on a problem that we were not
as familiar with going in. We eventually landed on this idea
after accounting for our current abilities as well as what kinds
of skills and technologies we wanted to explore further.

One of our main inspirations for this project is based
on a video published by the University of Florida which

demonstrates many of our project objectives [1]. In the
video, the researchers are able to control the movement
of a drone using a neural interfacing device (presumably
an EEG). The user is able to think forward and the drone
inches forward. While it may take some time for that
thought to actually translates to an action on the drone,
this video still demonstrates that this kind of neural control
is possible. Since this videos publication in 2015, many
organizations have tried to accomplish similar objectives
with much progress [2]. A successful neural interface
to control robots has the potential greatly enhance human
interaction with technology and has many diverse applications.

The robot was designed to be a simple chassis that would
allow us to perform tasks by receiving information from the
EEG and camera. To navigate easily and effectively, it was
decided that the robot would have a holonomic drivetrain. A
holonomic drivetrain is a drive base that has the ability to
move in any direction and rotate independently [3]. As such,
it can strafe from side to side without needing to rotate. This
is useful for navigation, because the robot will not have to
change its orientation in order to move around an object.

There are several different types of holonomic drivetrains.
The three main types are omni drive, swerve drive, and
mecanum drive. Each have their own characteristics make
them useful for their own purposes.

Figure 1: A) Omni Drive, B) Swerve Drive, C) Mecanum
Drive

An omni drive consists of omni wheels placed at 45
degrees at the corners of the robot. Each omni wheel has
rollers on the side, which allow the robot to strafe and go in
a direction perpendicular to the wheel face.

A swerve drive consists of 4 tank wheels mounted at
the corners of the robot. Each wheel module consists of
two motors: a swerve motor and a drive motor. The drive
motor rotates the wheel, while the swerve motor turns the
wheel module, allowing the robot to move in any direction

2

regardless of rotation.

A mecanum drive has 4 mecanum wheels aligned and
attached the same way that a tank drive works. Each
mecanum wheel has rollers that are placed at a 45 degree
angle. Based on the direction that each motor rotates, the
robot can strafe in different directions.

The pros and cons of each drivetrain were analyzed
when deciding which drivetrain to use:

For the purposes of a navigation robot, it is necessary
for the robot to be able to travel on a variety of surfaces. As
such, omni drive was ruled out, because its lack of torque
makes it difficult to go over sloped surfaces. When comparing
swerve and mecanum, swerve overall would be the better
choice. Mecanum wheels would wear out over time and
has less torque overall, making it less suited for outdoor
navigation. As such, a swerve drivetrain was initially designed.

However, after doing research on the costs of a swerve
module, ultimately it was deemed too expensive. The
drivetrain itself would cost upwards of $500, while the budget
allocated for the project was given as $200. As such, we
decided to design the robot using a mecanum drivetrain, even
though it was not as optimal as using a swerve drive. To

further reduce our costs, we decided that we would design
and 3D print our own mecanum wheels, which would be a
lot cheaper than buying them.

One other integral part to this project is the EEG circuit
itself. This is a simple circuit that was built based off the
schematic that is explained in the next section. Since it
is relatively cheap, it has a limited capacity in collecting
brain-wave data when compared to traditional, commercial
EEGs. This EEG is tuned to read alpha and beta waves
which encompasses all brain waves that have a frequency
from 8 to 40 Hz. These waves are the most important as
they are the waves associated with conscious thought. Theta
waves and delta waves are the waves below 8 Hz. Because
these waves are typically associated with being at rest or
being asleep, they are not useful for the purpose of this project.

As a whole, this project has many potential applications
outside of what we are exploring. It aims to create a hands-
free, interactive experience in which a user can control a
robot without directly interfacing with it. While this project
is bare bones in many aspects, it aims to demonstrate a proof
of concept that it is possible to have thought based control of
a robot on a low budget.

Our budget and parts list is based off the research that
we did in the methodology section below. Because we knew
that we had a limited budget, we had to make several design
changes to account for the lack of money that we had. We
were able to quickly do this research and determine what
equipment we needed based off our previous experiences in
this field.

3

II. METHODOLOGY

Our project was broken down into discrete groups: the EEG
group, the hardware group, and the integration group. Our
deliverables are broken down in our Gantt Chart here:

This Gantt chart served as a basic timeline for when we would
try to accomplish our tasks. However, we knew that with how
busy we would get during semester, that things would not go to
plan. As such, we made sure to evaluate our progress weekly
and determine what we wanted to accomplish each week. We
also split into three groups: Salman and Justin would work
on the EEG, Forest would work on the robot, and Dan, Sam
and Gaurav would work on integration between teams and
computer vision. We decided to split up the work this way to
maximize each of our strengths. We also realized that it would
be difficult for our schedules to line up, so it would be more
efficient if we met in smaller groups.

1) EEG Group: The EEG circuit is based on a simple
schematic online. This circuit relies heavily on the AD620
instrumentation amplifier which is used to directly read in the
input from the active electrodes. This instrumentation amp is
designed so as to mitigate the effect of environmental noise
that is always present. On the bottom of the schematic is a
simple op-amp circuit which uses a 3130 amp. This circuit
creates a floating ground at pin 6 of 2.5 volts which can
be used at any other point in the circuit. The 3130 amp
that is in the main circuit serves two purposes: to filter
out high frequency waveforms and to amplify the output of
the circuit. Since the waveforms read from the brain are at
very low amplitudes, it becomes important to amplify those
values through a combination of amplification from the AD620
and 3130 amp. Furthermore, the 3130 ensures that only low
frequency values are outputted through the implementation of
a low-pass filter. This circuit is specifically designed for use
with and Arduino Uno.

A. Hardware Group

Mecanum wheels were designed by a Swedish inventor
named Bengt Ilon in 1975 [5]. The mecanum wheel consists
of two main parts: the central wheel, and the outside rollers.
These rollers are usually placed at 45 degrees with respect
to the central wheel. Depending on the wheel direction and
speed at which each wheel moves, each wheel produces a
force vector.

The sum of these vectors determines where the drivetrain
will move; the combined force vector can be pointed at any
direction, allowing the drive base to move in any direction
regardless of direction. This is quite useful in tight spaces,
and useful in our case for maneuvering around objects without
changing orientation.

The drivetrain is able to translate in any direction, from
forward to backward and also from left to right. For strafing
from left to right and vice versa, the wheels have to rotate in
different directions. It is able to go at diagonals by applying
the same principles but also adjusting for the speed of each
wheel.

There are some flaws with mecanum wheels that need
to be accounted for. One such problem is that mecanum
struggles to strafe up an incline when rollers are held in place
from the outside. In this case, the rim of the mecanum wheel
will often hit the ground surface, preventing the wheel from
moving [6]. To avoid this, we will design our wheels to have
centrally mounted rollers.

4

Centrally mounted rollers split up the peripheral roller into two
parts, so the rim will not come into contact with the surface.
This allows the robot to have more contact with the ground
on uneven surfaces, at the cost of worse load carrying capacity.

The next step was to design the mecanum wheel itself.
To start off, we had to figure out roller curvature. In order
to strafe properly, the mecanum wheel has to be as close
to circular as possible. If the wheels are not circular, the
drivetrain will not be able to strafe without noticeable vertical
deflection. As such, each roller has to have the perfect
geometry in order to the wheel to remain circular. The values
for the curvature will be calculated in Excel. These values
will then be imported as a spline curve into Autodesk Fusion
360, which will allow us to create a 3D model of the roller.

For a given R(wheel radius) and r(roller maximum radius),
the curvature of a roller can be determined. Let us define
parameter S as the distance along roller axis to intersection
with Line L. Line L is the line from the wheels axis to a
point on the projection of the wheels circumference, as shown
in Figure x above. S will vary from 0 to half of the roller
maximum length. This gives us the following equations:

Upon calculating these values, we can find out the given roller
radius(Rr) at a given distance from the center(h). These values
are defined in the figure above. Compiling these values in an
Excel spreadsheet and graphing the results gives the curve
shown in the figure below.

The values for Rr and h were then imported into Autodesk
Fusion 360 as a spline curve. This resulting curve is shown
in the figure below. This was then revolved to create a
singular roller, with ends cut off to account for screw size,
nut attachment, and washer spacing.

The next step was to design the central wheel. The central
wheel was designed with several things in mind: Having a
certain thickness to ensure structural integrity, having a hole
pattern that would allow it to be adapted to the motor hub that
we bought, and having 8 holes for the rollers, which would
have a centrally mounted bearing. The bearing ensures that
the rollers rotate smoothly and make strafing for the wheels a
lot easier.

The front view of the mecanum wheel assembly indicates that
the wheel is indeed a perfect circle and the calculations of the
rollers done previously were correct. We could then proceed

5

on to the next section, which was actually manufacturing the
wheels, along with designing the physical chassis that would
house the electronics, wheels, and motors.

The chassis frame was designed to be made out of several
sheets of x 8 x 8 plywood. This would allow to be
lightweight, strong, and cost effective. The center of the robot
consists of a 2.5 x 8 x 8 volume box that would house all
of the electronics. The motors and wheels would be mounted
outside of that, making the robot approximately 14 long and
12 wide.

We also needed to choose an appropriate motor for our
purposes. The robot needed to have enough torque to support
its own weight and get over various surfaces, but also be fast
enough to serve its purpose as a navigation robot.

Given the forces acting on the robot on an incline, the neces-
sary torque of the robots motors can be calculated. Through
Newtons Second Law:

ma = f −mgsin
ma = T/r −mgsin

T = (100
efficiency) ∗ (

mr(a+g sin θ)
N)

Where m = robot mass, f = force needed to move robot, =
angle oF incline, T = torque needed to move robot, r = radius
of wheel, a = acceleration of robot, and N = number of wheels

By setting: m = 25lbs = 11.34kg
r = 2” = 0.0508m
α = 0.2m/s2
g = 9.81m/s2
θ = 15degrees

N = 4
e = 50%

Torque = 0.789N ∗m = 111.7oz ∗ in

For the required speed of the robot, a persons walking speed
was used as a measure. The average human walking speed is
1.4 m/s [9]. For a robot with wheel radius r = 2 = 0.0508m,
the circumference of the wheel is c = 2πr = 2π(0.0508)
= 0.318 m per rotation. As such, to travel at 1.4 m/s, the
motors have to spin at a rate of 1.4/0.319= 4.486 rotations per
second = 263.2 rpm. Therefore, the motors that we choose
should have the requirements of having a torque greater than

111.7 oz*in and a speed of greater than 263.2 rpm. Based
on these requirements, we decided on 170 rpm economy
gear motors from ServoCity. They have a stall torque of
306 oz*in, and while the 170 rpm is less than 263.2 rpm
required for walking speed, we decided having a higher
torque was more important than the speed level. The motors
were also mainly chosen for their relatively cheap price when
compared with their counterparts of the same torque and rpms.

After doing these calculations, we built the chassis and
3D printed the wheels, as shown in the figures below.

We also needed to wire the robot. The main setup consists
of motors, motor drivers, a battery, and a brain to control
everything. Initially, we used an Arduino to test the motors
and make sure everything was working. We then switched
to Raspberry Pi, to make integration with other parts of the
project, namely computer vision, go more smoothly. This also
required changing to the smaller L298N motor driver, as the
larger motor driver was not compatible with the Raspberry Pi
GPIO pins.

6

After we confirmed that the motor controllers worked, our
next step was to make sure that the robot could be manually
controlled. This involved connecting a PS3 controller to the
Raspberry Pi through bluetooth, then reading joystick values.
Based on the joystick values, the motor speeds and directions
were determined by summing the positions of the left joysticks
x and y axis for translation and the x axis for rotation.

B. Integration Group

The main objective of the integration group is to connect
all of the components to a web server where we can display
our data. The web framework we are choosing to use is
Django, which is a python based framework and a model-
view-template architecture. The web server needs to be run on
a host computer, but we cannot use our laptops or desktops
as hosts because we need our host to be attached to the robot.
Therefore, we are using a Raspberry Pi mini-computer as our
host.

The problem we faced with using the Raspberry Pi is
that it is typically used by connecting it to a monitor,
keyboard, and mouse, which would not be possible to attach
to the robot. Hence, we had to figure out a way to make the
Raspberry Pi headless, meaning we had to just have the pi as
well as a power source and nothing else. The most obvious
solution was to access the Pi via SSH. SSH is a networking
protocol which allows you to establish a network between
two computers and then access another computers terminal
from your terminal.

We faced several barriers when trying to make the Pi headless.
The first one was that we didnt have a network manager
installed on the device, so we werent able to connect it to the
WiFi. As a result we had to install the manger, update the Pis
software, and also edit the interfaces and dhcpcd files of the
Pi so that we could actually connect it to the internet. The
next problem we faced was getting the Pis IP address, which
we needed to have in order to SSH into it. Any device which
is connected to the internet has an IP address. When a device
connects to a network, it connects through a router, and as
a result its IP address is a subnet of the routers address. So
when we connect to different networks with different routers,
the IP address of the Pi will change to be a subnet of the
router its connected to. Therefore, we will never know in
advance what the Raspberry Pis IP address will be so we had
to figure out a way to find it.

Finding the Pis IP address is contingent on the Pi being
connected to the internet. If it is not connected to the internet,
then it does not have an IP address and we would not be able
to SSH into it as desired. This turned out to be the biggest
issue we faced in making the Pi headless, namely figuring
out how exactly to ensure that the Pi would connect to the
internet on boot without us having to manually connect it to
a monitor, open up the network manager, and connect it to
the WiFi manually. After much research, we were able to get
it to connect to the WiFi on boot by specifying the network
configurations in the wpa-supplicant module and telling it
to connect to that particular network automatically in the
interfaces module.

Finally, once we were able to ensure that the Pi would
connect to the internet on boot we were almost done making
the Pi completely headless. The last issue we had to figure
out was how to find the IP address of the Pi. The solution we
came up was to just make the computer list all devices whose
addresses were subnets of the router on the WiFi network
we wanted to connect to. Since our Pi was connected to the
WiFi, we knew that it had to be a member of this list. So

7

once we would locate the Raspberry Pi on the list we would
know its IP address which is listed along with the devices
hostname. With the Pis IP address, we were then able to SSH
into the Pi through our computers and able to run files on the
Pi remotely as we desired.

Using our ability to SSH into the Pi, we then began to
integrate our components. One of the main reasons that we
needed to use the Pi in the first place was because we were
using a Pi camera, which is simply a small eight megapixel
camera attached directly into the Pi, as well as an ultrasonic
distance sensor, which calculates the distance from itself to
an object by shooting a wave at it and then receiving it back,
and is also wired to the Pi. We needed to be able to interface
with these devices and the only way that we could do that
was to execute programs locally within the Pi. The purpose of
the camera is for the robot to be able to see what is in front
of it and be able to communicate with a person that there
is an object in front of it, and the purpose of the distance
sensor is to tell the person that it is within some distance of
an object. In order to make these devices execute, we needed
a multithreading program on the Pi that concurrently took a
picture and read a distance.

We then wanted to be able to display our results on a
webpage where we could see what the robot was seeing, and
also see other useful information like the distance. We used
the Django web framework because we already had some
familiarity with it and it is pretty easy to use. The simple web
page displayed above only shows the distance read by the
sensor and a picture taken by the Pi. These data are displayed
by running the program mentioned above which reads the
data and then sends post requests to the server, telling it to
display the data it has read. We are still working on our
server, not all components are connected as of yet. Also, we
will improve the design of the webpage and also increase the
servers functionality to show even more useful information.

The next part that we worked on was reading and receiving
distances. In order to accomplish this, we were initially
planning on using OpenCV and machine learning to
determine how far away objects were by comparing how
much bigger an object becomes as more pictures are taken
over time. However, we determined a better solution was to
use an ultrasonic sensor called the HC-SR04 that is able to

sense how far away the closest object is to it.

The HC-SR04 accomplishes this by sending ultrasound
waves at 40 kHz through the air. If the waves hit an object,
then they bounce back. So in order to calculate how far away
an object is, we check to see how long it takes for the waves
to bounce back and multiply it by the speed of the ultrasound
wave.

The HC-SR04 ultrasonic sensor is only capable of sending out
waves and detecting when ultrasound waves are received back
[10]. Therefore, any kind of math that is used to calculate
how far away the object is is done in a python script.

First, the start time of the ultrasound wave is recorded
in a variable called pulse-start-time. Then the time that the
ultrasound wave is received is also recorded in a variable
called pulse-end-time. We subtract the two values and that
is the amount of time that the ultrasound wave spent in the
air. This value is stored in a variable called pulse-duration.
Using our knowledge that the speed of an ultrasound wave is
approximately 34300 cm/s, we use a formula 34300*pulse-
duration/2 to find the distance in cm of the object that we are
detecting [11]. We divide our result by 2 because we only
need the distance between the object and the sensor, and the
pulse-duration accounts for both the time it takes to get to
the object and back.

In order for the robot to navigate through obstacles it would
have to process the images it received from the camera and
we determined that using OpenCV was the best way to give
the robot vision. We installed the OpenCV 3 libraries onto
the Pi and looked into how they could be used for the robot
to understand the orientation of his surroundings. Using our
webcam, visual studios, and the windows version of OpenCV,
we were able to track objects using a variety of functions.
For starters, we used the cvtColor() function to convert the
BGR (blue green red) binary input feed from our camera into
HSV (hue saturation value). Using HSV made it much easier to
filter different types of colors allowing us to seperate objects in
front of the robot from objects in the background. In addition,
the function createTrackbar() was used in conjunction with
this color conversion to allow us to filter out different colors
and work with the sliders, in real time, to see which settings
would work best to track certain colors. We used the erode()
and dilate() functions to get rid of any filtered holes within the
object we were trying to track and remove any extra random

8

pixels outside of the object that were not filtered out. Next up,
we used the findContours() function on the image outputted
by the color filtering which returned a vector of contours of
the white spaces in the filtered image. From these vectors we
would choose the largest contour using the moments() function
to find the contour with the largest enclosed area. Then, finally,
were able to track an object using our webcam. More research
must be done into ways of tracking objects regardless of their
color but this work has given us a strong basis in OpenCV to
go off of when we attempt to integrate this software with the
robot’s camera.

III. RESULTS AND DISCUSSION

A. EEG Group

Throughout the process of creating the EEG, we faced
many issues such as being unable to view the data on our
computers, not having any output at all from the circuit,
or too much noise in the data. Currently, the circuit works
and we are able to extract the data from it for use in other
programs. We have not yet developed the programs which
rely on the EEG data.

Initially, we were able to view the data using an Arduino
and Processing script that was made available with the EEG
schematic. From these scripts, we were able to produce a
visual output as shown in the image below. This output was
shown through the Processing script which displayed the
waveform in real time. However, this output would not be
good enough for us to use since we cannot actually extract
the data from the output. Furthermore, the script is old and
written in C which would not be a good language to use
moving forward. Thus, we found it important to interact with
the data in a Python script. This will help us later when it
comes to integrating all parts of the project since Python is
the most versatile language to use with extensive support.
The Python data outputs are also shown below.

We were able to successfully read data from the EEG.
Previously we were misreading the data. We were able to
detect blinks using simple calculus to find local minima.
Using the blinks, we were able to codify the the blinks into
actions.

B. Hardware Group

The robot chassis, wheel design, arm end effector, and
wiring are all complete. As such, the robot is successfully
able to move forward/backward, and strafe from side to side.
This is essential for our navigation. Additionally, the robot
can be controlled manually using a PS3 controller, which can
be useful for demonstrations and testing.

Results from testing show that the mecanum wheels
perform quite well when moving, and can strafe quite
effectively. This illustrates that the calculations done in the
methodology section proved effective. The robot is also able
to move well with the motors chosen, showing that the torque
calculations done in that sections were also effective.

Similarly, the end effector is effective at picking up
tennis balls. This is important, as it can give firm results in
making sure that the software is working well and integrated
effectively with the hardware.

C. Integration Group

We have made some progress on three fronts: making the
Raspberry Pi headless, reading pictures and distances from
the Raspberry Pi camera and HC-SR04 ultrasonic sensor, and
using openCV algorithms on pictures. We have gone over
much of our progress so far in the methodology section, so
in this section we will give some more detail on our results
and what we plan on doing with them.

Our first task was to make the Raspberry Pi headless,
which we have mostly accomplished. We are now able to
connect the Pi to the internet on boot, find its IP address, and
most importantly SSH into it from a remote computer.

The next step was to be able to receive data coming
from the sensor and camera on the Pi. We made a Django
web server which contains web pages to display the data. So
far, we have implemented a homepage that introduces our
project and an imaging server which contains the pictures

9

and distances read by the Pi.

We have also been working on server logic. The point
of the server is to respond to http requests made to it. We
have a script which uses multithreading to concurrently take
the picture and get the reading, and then sends a post request
to our server which then handles that request by posting the
image and distance to the imaging webpage.

Lastly, we have been learning about computer vision
algorithms and have implemented a few basic algorithms that
are described in the methodology section. Ultimately, we
hope to be able to use classification algorithms so that the
robot can detect certain objects in front of it.

IV. CONCLUSION

Our primary objective was to facilitate communication
between all the disparate components, discern a clear and
reproducible output from the EEG, and begin to autotomize,
however crudely, the hardware components.

We developed a web server to communicate between all three
parts. We have been working on receiving information from
the pi to the server and our next step was to communicate
with the robot. Based on the pictures and readings gathered
by the Pi, we were able to communicate to the robot that
its path is obstructed so that it knows it has to move in
another direction. After we are able to communicate between
the robot and the server, we were also able to communicate
between the EEG and the server. This is a separate task from
communicating between the EEG and the robot. In this case,
we gather the number of blinks our user did in a certain time
period, and pushed the data to our server . The purpose of
our web server, after all, is to convey the data to the user.
Finally, we need to establish a communication line between
the EEG and robot. However, it may make more sense to not
use a web server for this line of communication because web
servers are used to handle HTTP requests, not just general
communication that would be used between the two. As a
result, we are considered some other client-server model
such as interfacing between sockets to communicate between
the two. Integrating all three parts allowed us to seamlessly
create a nice end user experience, working towards the social
good objective.

A major task in the EEG space is to reduce noise. We
investigated the potential impedance of the circuit in the first
place, and introduce a filter to remove the noise. Furthermore,
our physical circuit was cleaned up by shortening wires,
cleaning contacts, and re-calibrating the trim-potentiometers.

The hardware components have been completed for the
most part. To make the robot more user friendly, the
electronics were cleaned up, and several switches were added.
This will made it easier to power the robot and charge the
batteries. Additionally, some hardware advancements were
designed in order to make the uses of the robot more apparent.

In conclusion, good progress has been made in reference to
each individual project group, and we achieved our objective
of integrating all three parts of our project with a common
goal of having our robot move. Our robot is able to move

ACKNOWLEDGMENT

The authors would like to thank Dean Antoine, Professor
Yates, Supraja, and the rest of the Design Advisers for their
hard work and dedication towards supporting the Design and
Development course.

REFERENCES

[1] https://www.youtube.com/watch?v=hLjxMjBlB9k
[2] https://www.thedrive.com/tech/19498/emotivs-headset-reads-your-brain-

and-lets-you-control-drones-with-your-mind
[3] http://ftckey.com/build/drive-trains/
[4] https://sites.google.com/site/chipstein/home-page/building-the-amplifier-2
[5] https://en.wikipedia.org/wiki/Mecanum wheel
[6] http://www.incdmtm.ro/mecahitech2011/articole/Pp112-123.pdf
[7] https://dokumen.tips/documents/contour-of-a-bumpless-mecanum-

roller.html
[8] https://www.robotshop.com/community/blog/show/drive-motor-sizing-

tool
[9] https://en.wikipedia.org/wiki/Walking
[10] https://pimylifeup.com/raspberry-pi-distance-sensor/
[11] https://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-

sr04/

